حل بعضی از معادلات دیفرانسیل با مشتقات جزئی با استفاده از روش زیر معادله دیفرانسیل معمولی

thesis
abstract

دراین پایان نامه بعضی از معادلات معروف را بااستفاده از روش زیرمعادله دیفرانسیل معمولی برنولی حل کرده ایم.معادلات دیفرانسیل بامشتقات جزئی غیرخطیرا با تغییرمتغیر مناسب به معادلات دیفرانسیل معمولی تبدیل نموده وپس از یکسری اعمال جبری مناسب،جواب های دقیق معادلات رابه طوریکه به جواب معادله برنولی وابسته شود،به دست می آوریم.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

تعدیل وردشی شبکه در حل معادلات دیفرانسیل با مشتقات جزئی دو بعدی

در روش وردشی برای تعدیل شبکه، شبکه تعدیل پذیر به عنوان نگاره یک شبکه ثابت یکنواخت روی یک دامنه محاسباتی تحت تبدیل مخنصات مناسب بنا می شود. این تبدیل می نیمم کننده یک تابعک معین می باشد که میزان خطا را در نتایج عددی اندازه می گیرد. در این راستا یک تابع نشانگر تجویز می شود تا تعدیل شبکه را کنترل کند. در این مقاله یک تابعک تولید و تعدیل شبکه که تعریف آن بر نگاشت های همساز روی خمینه ها استوار است، ...

full text

حل عددی معادلات دیفرانسیل با مشتقات جزئی با استفاده از روش معادله مرز-انتگرال و اسپلاین

در این پایان نامه , مسئله سطح آزاد آب در دو فاز حل شده است. در فاز اول با روش المان مرزی, یک بعد از ابعاد مسئله را با استفاده از اتحاد دوم گرین کاهش داده ایم. با بیان حل اساسی برای مسئله, هسته های انتگرال به صورت تحلیلی محاسبه می شود. از آنجایی که محاسبه این انتگرال روی هر مرز به صورت تحلیلی تقریبا غیر ممکن است, با تقسیم مرز و تعریف المان های محلی به صورت توابع لاگرانژ انتگرال روی المان ها تقسی...

تعدیل وردشی شبکه در حل معادلات دیفرانسیل با مشتقات جزئی دو بعدی

در روش وردشی برای تعدیل شبکه، شبکه تعدیل پذیر به عنوان نگاره یک شبکه ثابت یکنواخت روی یک دامنه محاسباتی تحت تبدیل مخنصات مناسب بنا می شود. این تبدیل می نیمم کننده یک تابعک معین می باشد که میزان خطا را در نتایج عددی اندازه می گیرد. در این راستا یک تابع نشانگر تجویز می شود تا تعدیل شبکه را کنترل کند. در این مقاله یک تابعک تولید و تعدیل شبکه که تعریف آن بر نگاشت های همساز روی خمینه ها استوار است، ...

full text

حل عددی معادلات دیفرانسیل معمولی کسری با روش گالرکین ناپیوسته موضعی

در این مقاله، روش گالرکین ناپیوسته‌ی موضعی برای حل معادلات دیفرانسیل معمولی با مرتبه‌ی کسری را در حالت کلی به کار می‌بریم.  در این روش انتخاب (طبیعی) شار عددی آپویند، ما را قادر می‌سازد تا مسائل مقدار اولیه برای معادلات کسری معمولی را به صورت بازه به بازه و پیشرو در زمان حل کنیم. این بدین معنی است که ما بایستی در هر زیربازه به حل یک دستگاه معادلات از مرتبه پایین $(k+1)times (k+1)$...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه گیلان - دانشکده علوم ریاضی

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023